
The Secret Life of Services
Maksim Lin

Freelance Android Developer

www.manichord.com

Poppy App

calculating digits of ᵨ

public class PiCalculator {
 /**
 * Calculate digits of Pi
 */
 public static void compute() {

// calc tight-loop ...
 }
}

Compute

Why Services?

Because...

“A Service is an application component that can
perform long-running operations in the
background and does not provide a user
interface. Another application component can
start a service and it will continue to run in the
background even if the user switches to another
application.”

- developer.android.com

Staying Alive...

Because a process running a service is ranked
higher than a process with background
activities, an activity that initiates a long-running
operation might do well to start a service for
that operation, rather than simply create a
worker thread—particularly if the operation will
likely outlast the activity.

- developer.android.com

Android is a Framework

Frameworks ?

CALLBACKS! CALLBACKS!
CALLBACKS!

Android Framework:
The Lifecycle Rules

Service Lifecycle

Service Lifecycle

Intent intent = new Intent(this, PoppyStandardService.class);
startService(intent);

@Override
public int onStartCommand(Intent intent, int flags, int startId) {
 // do our stuff...
 PiCalculator.compute();

 return super.onStartCommand(intent, flags, startId);
}

Don’t forget the Manifest

<service
 android:name=".PoppyStandardService"
 android:enabled="true"
 android:exported="false" >
</service>

popp

Poppy is being sloppy!

Services Are...

★ NOT a Process/Thread

★ A Lifecycle container

So instead...

public int onStartCommand(Intent intent, int flags, int
startId) {
 new Thread(new Runnable() {
 @Override
 public void run() {
 // do our stuff...in a *NEW* thread
 PiCalculator.compute();
 }
 }).start();
 return super.onStartCommand(intent, flags, startId);
}

IntentService is ...

★ badly named

★ Very useful and easy to use

★ Callback on background thread

★ Only ONE background thread: serialised work

★ Queues intents

★ Stops itself when no more work

Easy....

public class PoppyIntentService extends IntentService {
…
@Override
protected void onHandleIntent(Intent intent) {
 // do our stuff...on a thread prepared for us earlier...
 PiCalculator.compute();
}

But

1

100% !!!!

But

Why ??

Thread Priority

What is the IntentServices thread priority ?

Lets look at the src…
public void onCreate() {

 ...

 HandlerThread thread = new HandlerThread("IntentService[" + mName + "]");

Hmmm...

Thread Priority - Cont.d

public class HandlerThread extends Thread {

 ...

 public HandlerThread(String name) {

 super(name);

 mPriority = Process.THREAD_PRIORITY_DEFAULT;

 }

Thread Priority - Cont.d

public static final int THREAD_PRIORITY_DEFAULT
Added in API level 1

Standard priority of application threads.

public static final int THREAD_PRIORITY_BACKGROUND
Added in API level 1

Standard priority background threads. This gives your thread a slightly lower
than normal priority, so that it will have less chance of impacting the
responsiveness of the user interface.

public static final int THREAD_PRIORITY_LOWEST
Added in API level 1

Lowest available thread priority. Only for those who really, really don't want to
run if anything else is happening.

★ Bug filed and patch submitted but Abandoned in Gerrit

★ DIY:

@Override
protected void onHandleIntent(Intent intent) {
 Process.setThreadPriority(
 Process.THREAD_PRIORITY_BACKGROUND);
 // do our stuff...in a thread prepared for us already
 PiCalculator.compute(1000);
}

from d.a.com example code:
public void onCreate() {
 // Start up the thread running the service.

// Note that we create a separate thread because the service
// normally runs in the process's main thread, which we don't
// want to block. We also make it background priority so
// CPU-intensive work will not disrupt our UI.
HandlerThread thread = new HandlerThread(

"ServiceStartArguments", Process.
THREAD_PRIORITY_BACKGROUND);

 thread.start();
 ...

Foreground Services

★ Actively being used by User

(eg. Music Player, Pedometer, etc)

★ (almost) Never be killed

★ MUST display a On-Going Notification

Poppy: comms back to UI

★ Direct: Notifications / Toasts

★ Broadcasts (System, Local or Pending)

★ Binding

Binding ?

More Callbacks!

Binding...

★ Clients (Activities) (un)-bind to Services

★ Binding is Async (more callbacks!)

★ 2-way RPC

★ Bound Service auto-shutdown if not “started”

★ Can be used with or without starting Service

★ Learn about IBinder...

What did we learn?

★ Services are a Lifecycle container

★ Avoid doing your own Thread Management

★ Use IntentService

★ Look at (Android) source when in doubt

★ Read the Android docs

Thank You!

References
Android Threading:
http://www.androiddesignpatterns.com/2014/01/thread-scheduling-in-android.html
http://stackoverflow.com/questions/8955458/asynctask-must-it-take-such-a-performance-penalty-hit
IntentService Thread Priority:
https://code.google.com/p/android/issues/detail?id=35440

http://www.androiddesignpatterns.com/2014/01/thread-scheduling-in-android.html
http://www.androiddesignpatterns.com/2014/01/thread-scheduling-in-android.html
http://stackoverflow.com/questions/8955458/asynctask-must-it-take-such-a-performance-penalty-hit
http://stackoverflow.com/questions/8955458/asynctask-must-it-take-such-a-performance-penalty-hit
https://code.google.com/p/android/issues/detail?id=35440
https://code.google.com/p/android/issues/detail?id=35440

Image Credits
“square wheel trike” CC https://www.flickr.com/photos/25831992@N03/2724551187

“111 Hollywood Sign” www.flickr.com/photos/7294653@N07/ (CC BY-NC 2.0)

“Activity Liefecycle” http://developer.android.com/guide/components/activities.html Creative Commons Attribution 2.5

“Service Liefecycle” http://developer.android.com/guide/components/services.html Creative Commons Attribution 2.5

Seinfeld “The Pie” episode

“thread scheduling diagram” http://www.gameprogrammer.net/delphi3dArchive/multithreading.htm

“Android Eating KeyLIme Pie” Manu Cornet (CC BY-NC-ND 3.0) http://www.bonkersworld.net

“Android Emoji” Android Emoji fonts Copyright © 2008 The Android Open Source Project. Licensed under the Apache License http://www.hey.

fr/fun/emoji/android/en/emoji_android_large_list.html

https://www.flickr.com/photos/25831992@N03/2724551187
http://developer.android.com/guide/components/activities.html
http://developer.android.com/guide/components/services.html
http://www.bonkersworld.net
http://www.hey.fr/fun/emoji/android/en/emoji_android_large_list.html
http://www.hey.fr/fun/emoji/android/en/emoji_android_large_list.html
http://www.hey.fr/fun/emoji/android/en/emoji_android_large_list.html

Questions?

http://www.manichord.com

github.com/maks

@mklin

https://plus.google.com/+MaksimLin

