
Real world Flutter

Maksim Lin

www.manichord.com

This is not a demo...

Topics

● Quick Intro
● Dev UX
● Porting
● State Management
● Architecture
● Project Structure
● Native Integration
● Logging / Debugging
● Monitoring Analytics

What is Flutter?

“Flutter is Google’s UI toolkit for building
beautiful, natively compiled applications for

mobile, web, and desktop from a single
codebase.”

Developer UX

● First platform I have used where vendor
seems to care deeply about:
Developer UX

● a PM for developer ux:

Developer UX

Even the biggest critics agree…

Flip, Flop, FLAP

Porting/Integrating existing
code-bases

Google: Add to App

Maks: FLAP

Storyboarding

● Storyboard package: storyboard: ^0.0.4

● “Container -> Content” widgets architecture

● Inspired by Storybook for web: React,

Angular, etc

State management

Use Provider and BLOC’s
- Be happy and move on! 😉👌

● Keep all business logic out of widgets, put it
in BLOCs (or anywhere else except widgets!)

● Pragmatic BLOC: everything doesn't have to
be a stream!

● If doing “clean architecture” have BLOCs use
services

State Mgmt: DECOUPLE from
Blocs/Providers for generic widgets

Often can just pass in a stream and/or
callbacks to actual widget from “container”
widget to make easier to reuse and also to
storyboard.
eg.

Yet another idea Flutter “borrowed” from React.
Dan Abramov called it:
“Presentational and Container Components”

https://medium.com/@dan_abramov/smart-and-dumb-components-7ca2f9a7c7d0

Project Structure

Just my way, unlike Android (almost) nothing is
proscribed by Flutter

Top-level:
● lib/
● assets/
● test/
● docs/

Project Layout: lib/

● blocs/
● debug/
● localisation/
● models/
● plugins/
● screens/
● services/
● style/
● types/
● widgets/

Project Layout: assets/

● data/
● fonts/
● l10n/
● images

 /icons
/{screen_name}

● videos
/{screen_name}

Native Integration

● Easiest to do directly without packaging
custom plugins

● Need to manually initialise
eg. for Android:

Deep Integration: OpenGL

● Flutter -> Java -> C++
● Flutter -> ObjC -> C++
● Oh my! Can it be done?
● Others paved the way…

When things go wrong

We as developers spend most of our time with
things that have gone wrong...

Logging

● Much more useful than with native dev as no
recompile needed

● Lots to choose from!...
stdout (print), package:logging,
dart:developer, 3rd party pkgs

● Which to use?
● … print for quick/temporary,
● … dart:developer
● Cannot filter or set levels in VS Code or

Devtools 😞

Debugging all the things...

Bonus:
Network Logging & Debugging

Using Logging:

Not really maintained now 😞

Bonus:
Network Logging & Debugging

Using Proxy (eg. Charles):

To Fork or not to Fork...

Even first-party plugins can need more
functionality (markdown, sentry)

“Fork in the Road” by Curtis Gregory Perry - CC BY-NC-SA 2.0

Crashlytics: Dont!

● Crashlytics just painful, poor functionality
● Use Sentry instead!
● Flutter docs recommends it over Crashlytics!
● First-party Sentry package!
● still under construction - PR incoming for

context support...

Monitoring: Errors and Analytics

Thank You!

Questions?

 @mklin

 maks

